

Electrochemical CH₂O Detection Module (Model: TE08-CH₂O)

User's Manual

Version: 1.7

Valid from: 2020-04-17

Taiyuan Tengxing sensor technology Co., Ltd

Statement

1. The copyright of instructions belong to Taiyuan Tengxing sensor technology Co., Ltd(hereinafter referred to as the Company), nobody is allowed to copy, translate, spread or store without written approval.

2.Thanks for using our product. In order to use the products more smoothly, reduce faults result from inappropriate using, please read the instructions carefully before using and follow the rules suggested strictly. Anyone who don't follow the instructions, disassemble or change the internal components without permission will afford the loss.

3. The color, style and size of the product is subject to the object you received.

4. The company follows the idea of scientific and technological progress, make efforts to productimproving and technology-innovating. So we have the right to improve product without prior notice.

5.Please make sure it's valid before using the instructions. Any good suggestions from you is welcomed.

6. The instructions should be well kept.

Taiyuan Tengxing sensor technology Co., Ltd

Electrochemical CH2O Detection Module ZE08-CH2O

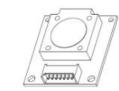
Profile

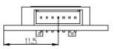
TE08-CH2O is a general-purpose and miniaturization electrochemical formaldehyde detection module. It utilizes electrochemical principle to detect CH2O in air which makes the module with high selectivity and stability .It is built-

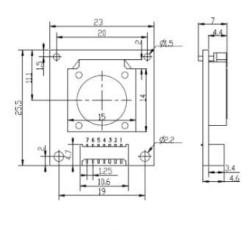
in temperature sensor to make temperature compensation. It has the digital output and analog voltage output at the same time. It is a combination of mature electrochemical detection principle and sophisticated circuit design. Features

Table 1.

*High sensitivity & resolution, Low power consumption, Long life *UART/Analog Voltage/PWM wave output


* Good stability, excellent ability of Anti-interference * Temperature compensation , Excellent Linear output


Main Application


Technical Parameters

Portable detector, air-quality monitor, air cleaner, air renewal system, air conditioner, smart home.

Model No.	TE08-CH2O		
Target Gas	CH2O		
Interference Gas	Alcohol, CO &ect.		
Output Data	DAC(0.4~2V standard voltage output, corresponding concentration: 0 ~ full scale)		
	UART output(3V TTL Electrical Level)		
Working Voltage	3.7V~5.5V		
Warm up time	≤3 minutes		
Response time	≤60s		
Resume time	≤60s		
Detection Range	0 \sim 5ppm		
Resolution	≤0.01ppm		
Operating Temp.	-20°C∼50°C		
Operating Hum.	15%RH-90%RH(No condensation)		
Storage temp.	0∼25℃		
Working life	5 years (in clean air 18 $^\circ\!\mathbb{C}$ ~ 25 $^\circ\!\mathbb{C}$)		

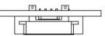


Fig 1: Module structure

Description:		Table 2
	PIN	Instruction
	Pin1	Reserved
	Pin2	DAC (0.4 \sim 2V for 0-full scale)
	Pin3	GND
	Pin4	Vin (Voltage input 3.7V \sim 5.5V)
	Pin5	UART (RXD) 0 \sim 3.3V data input
	Pin6	UART (TXD) 0 \sim 3.3V data output
	Pin7	Reserved

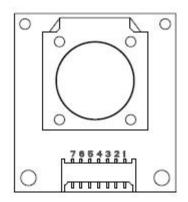


Fig2. Pin figure of the Module

Communication Protocol:

1. General Settings

Pin

	Table 3						
Baud Rate	9600						
Data Bits	8						
Stop Bits	1						
Parity	None						

2 .Commands

There are two communication type: active upload type and Q&A type. The default type for this module is active upload and it sends gas concentration every other one second.

If the user switched to the question and answer mode, need to re-switch to active upload, send the following command line format:

Table 4

				lable 4			-	
Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7	Byte8
Start Byte	reserved	Switch	Active	reserved	reserved	reserved	reserved	checksum
		command	upload					
0xFF	0x01	0x78	0x40	0x00	0x00	0x00	0x00	0x47

Active upload data display format is as follows:

	lable 5							
Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7	Byte8
Start Byte	Gas Name CH2O	Unit ppb	No decimal byte	Concentratio n (High Byte)	Concentratio n (Low Byte)	Full Range (High Byte)	Full Range (Low Byte)	Checksum
OXFF	0X17	0x04	0x00	0x00	0x25	0x13	0x88	0x25

T-1-1- E

Gas concentration value=High byte of concentration *256+ Low byte of concentration.

When converted to PPM: PPM = PPB / 1000.

1PPM \times 1.25 = 1.25mg / m3

When the user needs the question and answer mode, you can send the following command format to close the active upload data, and then send the command to read the concentration can be. Close the active command line format as follows:

Table 6

				Таыс	0		-	
Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7	Byte8
Start	reserved	Switch	Q&A	reserved	reserved	reserved	reserved	checksum
Byte		command						
0xFF	0x01	0x78	0x41	0x00	0x00	0x00	0x00	0x46

In question and answer mode, the command format for reading the concentration is as follows:

				Table	7			
Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7	Byte8
Start	reserved	command	reserved	reserved	reserved	reserved	reserved	checksum
Byte								
0xFF	0x01	0x86	0x00	0x00	0x00	0x00	0x00	0x79

The returned sensor density value display format is as follows:

_				Table 8	}			
Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7	Byte8
Start	command	High	Low byte	reserved	reserved	High byte	High byte	checksum
Byte		byte(ug/m3)	(ug/m3)			(ppb)	(ppb)	
0xFF	0x86	0x00	0x28	0x00	0x00	0x00	0x20	0x32

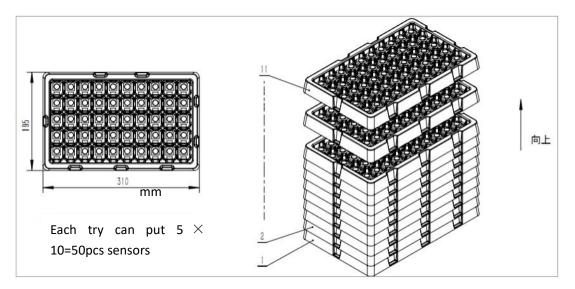
Gas concentration value=High byte of concentration *256+ Low byte of concentration

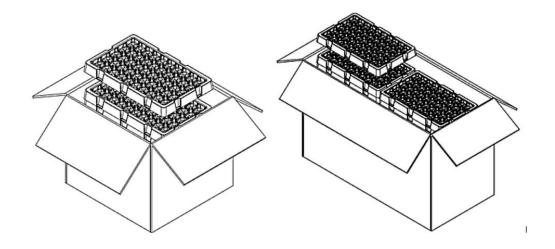
3 .Checksum and calculation

{

* Function Name: unsigned char FucCheckSum(uchar *i,ucharIn)

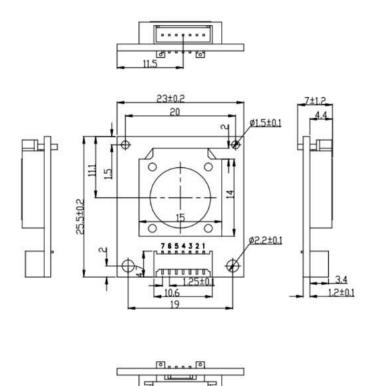
- * Functional description: Sum check 【Take Not(Byte1+Byte2+...Byte7) +1】
- * Function declaration: Take Not(Byte1+Byte2+...ByteX (X>2)


unsigned char FucCheckSum(unsigned char *i, unsigned char In)


```
unsigned char j,tempq=0;
i+=1;
for(j=0;j<(ln-2);j++)
{
    tempq+=*i;
    i++;
}
tempq=(~tempq)+1;
return(tempq);
}
```

Cross interference gas		Table 9	
	Gas	Concentration/ppm	Equivalent CH ₂ O/ppm
	CH ₂ O	5	5
	C_6H_6	10	0.1
	C ₇ H ₈	10	0.46
	C2H4O2	200	0.52
	C2H5OH	100	40.6
	H2S	50	3
	CO	200	0.64

Packing:


- 1. Place the sensor in the same direction in the blister tray.
- 2. Place the sensor's blister trays in the appropriate number of layers according to the box specifications.
- 3. Place the packaged sensor in the carton.
- 4. The carton is sealed and packed.
- 5. Orders with a single shipment less than the minimum package are not subject to this specification.

Cautions:

- 1. Sensor shall Avoid organic solvent, coatings, medicine, oil and high concentration gases
- 2. The module may not be completely encapsulated with resin material, nor may it be immersed in an oxygen-free environment, otherwise the performance of the sensor may be damaged;
- 3. Modules cannot be used in environments with corrosive gases for long periods of time, and corrosive gases can damage the sensor;
- 4. Excessive impact or vibration should be avoided;
- 5. The initial power-up of the module needs to be preheated for 24-48 hours, so that the module is fully stabilized and then tested normally.
- 6. Please do not use the modules in systems which related to human being's safety.
- 7. Please do not use the modules in strong air convection environment.
- 8. Do not leave the module in a high concentration of organic gas for a long time. If it is placed for a long time, it will cause the sensor zero to drift and recover slowly.
- 9. It is forbidden to use hot melt adhesive or sealant package module with curing temperature higher than 80 $\,^\circ$ C;
- 10. It is forbidden to store and use in high concentration alkaline gas for a long time.

Tolerance: ±0.2mm